A quantitative multiparameter mean ergodic theorem

نویسندگان

چکیده

We use techniques of proof mining to obtain a computable and uniform rate metastability (in the sense Tao) for mean ergodic theorem finite number commuting linear contractive operators on uniformly convex Banach space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative Mean Ergodic Theorem for uniformly convex Banach spaces

We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1] and T. Tao [11].

متن کامل

A Ratio Ergodic Theorem for Multiparameter Non-singular Actions

We prove a ratio ergodic theorem for non-singular free Z and R actions, along balls in an arbitrary norm. Using a Chacon-Ornstein type lemma the proof is reduced to a statement about the amount of mass of a probability measure that can concentrate on (thickened) boundaries of balls in R. The proof relies on geometric properties of norms, including the Besicovitch covering lemma and the fact tha...

متن کامل

On the Mean Ergodic Theorem for Subsequences

With these assumptions we have T defined for every integer n as a 1-1, onto, bimeasurable transformation. Henceforth we shall assume that every set considered is measurable, i.e. an element of a. We shall say that P is invariant if P(A) =P(TA) for every set A, P is ergodic if P is invariant and if P(U^L_oo TA) = 1 for every set A for which P(A) > 0 , and finally P is strongly mixing if P is inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2021

ISSN: ['1945-5844', '0030-8730']

DOI: https://doi.org/10.2140/pjm.2021.314.209